Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2089, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453961

RESUMO

Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.


Assuntos
Hipertermia Induzida , Neoplasias Ovarianas , Feminino , Humanos , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Multiômica , Mitose , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia
2.
Adv Sci (Weinh) ; 11(12): e2302340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38229169

RESUMO

The lack of human-derived in vitro models that recapitulate cervical pre-cancerous lesions has been the bottleneck in researching human papillomavirus (HPV) infection-associated pre-cancerous lesions and cancers for a long time. Here, a long-term 3D organoid culture protocol for high-grade squamous intraepithelial lesions and cervical squamous cell carcinoma that stably recapitulates the two tissues of origin is described. Originating from human-derived samples, a small biobank of cervical pre-tumoroids and tumoroids that faithfully retains genomic and transcriptomic characteristics as well as the causative HPV genome is established. Cervical pre-tumoroids and tumoroids show differential responses to common chemotherapeutic agents and grow differently as xenografts in mice. By coculture organoid models with peripheral blood immune cells (PBMCs) stimulated by HPV antigenic peptides, it is illustrated that both organoid models respond differently to immunized PBMCs, supporting organoids as reliable and powerful tools for studying virus-specific T-cell responses and screening therapeutic HPV vaccines. In this study, a model of cervical pre-cancerous lesions containing HPV is established for the first time, overcoming the bottleneck of the current model of human cervical pre-cancerous lesions. This study establishes an experimental platform and biobanks for in vitro mechanistic research, therapeutic vaccine screening, and personalized treatment for HPV-related cervical diseases.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Neoplasias do Colo do Útero/patologia , Papillomaviridae/genética , Perfilação da Expressão Gênica
3.
Cell Biosci ; 13(1): 178, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759323

RESUMO

BACKGROUND: Although the clinical application of PARP inhibitors has brought hope to ovarian cancer, the problem of its resistance has become increasingly prominent. Therefore, clinical experts have been focused on finding specific indicators and therapeutic targets that can be used for resistance monitoring of PARP inhibitors. RESULTS: By cfDNA detecting during Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, we found the presence of MRE11:p.K464R mutation was strongly associated with acquired Olaparib resistance. Structural analysis revealed that the MRE11:p.K464R mutation is situated at a critical site where the MRE11 protein interacts with other biomolecules, leading to potential structural and functional abnormalities of MRE11 protein. Functionally, MRE11:p.K464R mutation enhanced the tolerance of Olaparib by reducing the DNA damage. Mechanistically, MRE11:p.K464R mutation improved the efficiency of DNA damage repair and induce Olaparib resistance by enhancing its binding activity with the interacting proteins (including RAD50 and RPS3). Among them, the enhanced binding of MRE11:p.K464R mutation to RAD50/RPS3 facilitated non-homologous end joining (NHEJ) repair in tumor cells, thereby expanding the scope of research into acquired resistance to PARP inhibitors. CONCLUSIONS: Our findings provide a theoretical basis for MRE11:p.K464R mutation as a specific indicator of resistance monitoring in Olaparib treatment, and the exploration of its resistance mechanism provides a novel insights for the formulation of combination ther therapies after Olaparib resistance.

4.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072347

RESUMO

BACKGROUND: Mismatch repair deficiency (dMMR) is a well-recognized biomarker for response to immune checkpoint blockade (ICB). Strategies to convert MMR-proficient (pMMR) to dMMR phenotype with the goal of sensitizing tumors to ICB are highly sought. The combination of bromodomain containing 4 (BRD4) inhibition and ICB provides a promising antitumor effect. However, the mechanisms underlying remain unknown. Here, we identify that BRD4 inhibition induces a persistent dMMR phenotype in cancers. METHODS: We confirmed the correlation between BRD4 and mismatch repair (MMR) by the bioinformatic analysis on The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium data, and the statistical analysis on immunohistochemistry (IHC) scores of ovarian cancer specimens. The MMR genes (MLH1,MSH2,MSH6,PMS2) were measured by quantitative reverse transcription PCR, western blot, and IHC. The MMR status was confirmed by whole exome sequencing, RNA sequencing, MMR assay and hypoxanthine-guanine phosphoribosyl transferase gene mutation assay. The BRD4i AZD5153 resistant models were induced both in vitro and in vivo. The transcriptional effects of BRD4 on MMR genes were investigated by chromatin immunoprecipitation among cell lines and data from the Cistrome Data Browser. The therapeutic response to ICB was testified in vivo. The tumor immune microenvironment markers, such as CD4, CD8, TIM-3, FOXP3, were measured by flow cytometry. RESULTS: We identified the positive correlation between BRD4 and MMR genes in transcriptional and translational aspects. Also, the inhibition of BRD4 transcriptionally reduced MMR genes expression, resulting in dMMR status and elevated mutation loads. Furthermore, prolonged exposure to AZD5153 promoted a persistent dMMR signature both in vitro and in vivo, enhancing tumor immunogenicity, and increased sensitivity to α-programmed death ligand-1 therapy despite the acquired drug resistance. CONCLUSIONS: We demonstrated that BRD4 inhibition suppressed expression of genes critical to MMR, dampened MMR, and increased dMMR mutation signatures both in vitro and in vivo, sensitizing pMMR tumors to ICB. Importantly, even in BRD4 inhibitors (BRD4i)-resistant tumor models, the effects of BRD4i on MMR function were maintained rendering tumors sensitive to ICB. Together, these data identified a strategy to induce dMMR in pMMR tumors and further, indicated that BRD4i sensitive and resistant tumors could benefit from immunotherapy.


Assuntos
Neoplasias Colorretais , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Inibidores de Checkpoint Imunológico , Reparo de Erro de Pareamento de DNA/genética , Fatores de Transcrição/genética , Proteômica , Neoplasias Colorretais/patologia , Mutação , Microambiente Tumoral , Proteínas de Ciclo Celular/genética
5.
Acta Biomater ; 157: 428-441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549633

RESUMO

Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Sistemas de Liberação de Fármacos por Nanopartículas/efeitos adversos , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral
6.
BMC Pregnancy Childbirth ; 22(1): 305, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35399086

RESUMO

BACKGROUND: The impact of Chlamydia trachomatis infection (CT) on the outcomes of In-Vitro Fertilization / Intracytoplasmic sperm injection (IVF/ICSI) has been controversial. METHODS: A total of 431 infertility women aged 20-38 years with or without Chlamydia trachomatis infection before fresh/ frozen embryo transfer were included to investigate the effect of cured CT infection. The infected group was divided into two subgroups for ≤3 months and > 3 months according to the different intervals between Chlamydia trachomatis positive testing and embryo transfer. The effect of chlamydia infection and the intervals between infection and embryo transfer on pregnancy outcomes was analyzed with correction for potential confounders within a multivariable model. RESULTS: Our results revealed that implantation rate was significantly lower and the premature rupture of membranes (PROM) was higher in women with CT infection than non-infection. The multivariate logistic regression analysis adjusting for baseline characteristics showed no significant difference in live birth rate between neither two groups nor two subgroups. CONCLUSIONS: The study suggests that previous Chlamydia trachomatis infection would lead to high risk of PROM. The intervals between infection and embryo transfer would not impact the pregnancy outcomes of IVF/ICSI.


Assuntos
Infecções por Chlamydia , Injeções de Esperma Intracitoplásmicas , Infecções por Chlamydia/epidemiologia , Chlamydia trachomatis , Feminino , Fertilização In Vitro/métodos , Humanos , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...